Some Generalized Fwer Procedures
نویسندگان
چکیده
In a multiple testing problem where one is willing to tolerate a few false rejections, procedure controlling the familywise error rate (FWER) can potentially be improved in terms of its ability to detect false null hypotheses by generalizing it to control the k-FWER, the probability of falsely rejecting at least k null hypotheses, for some fixed k > 1. Simes’ test for testing the intersection null hypothesis is generalized to control the k-FWER weakly, that is, under the intersection null hypothesis, and Hochberg’s stepup procedure for simultaneous testing of the individual null hypotheses is generalized to control the k-FWER strongly, that is, under any configuration of the true and false null hypotheses. The proposed generalizations are developed utilizing joint null distributions of the k-dimensional subsets of the p-values, assumed to be identical. The generalized Simes’ test is proved to control the k-FWER weakly under the multivariate totally positive of order two (MTP2) condition [J. Multivariate Analysis 10 (1980) 467–498] of the joint null distribution of the p-values by generalizing the original Simes’ inequality. It is more powerful to detect k or more false null hypotheses than the original Simes’ test when the p-values are independent. A stepdown procedure strongly controlling the k-FWER, a version of generalized Holm’s procedure that is different from and more powerful than [Ann. Statist. 33 (2005) 1138–1154] with independent p-values, is derived before proposing the generalized Hochberg’s procedure. The strong control of the k-FWER for the generalized Hochberg’s procedure is established in situations where the generalized Simes’ test is known to control its k-FWER weakly.
منابع مشابه
On generalized fixed sequence procedures for controlling the FWER.
Testing a sequence of pre-ordered hypotheses to decide which of these can be rejected or accepted while controlling the familywise error rate (FWER) is of importance in many scientific studies such as clinical trials. In this paper, we first introduce a generalized fixed sequence procedure whose critical values are defined by using a function of the numbers of rejections and acceptances, and wh...
متن کاملStepup Procedures Controlling Generalized Fwer and Generalized Fdr
In many applications of multiple hypothesis testing where more than one false rejection can be tolerated, procedures controlling error rates measuring at least k false rejections, instead of at least one, for some fixed k ≥ 1 can potentially increase the ability of a procedure to detect false null hypotheses. The k-FWER, a generalized version of the usual familywise error rate (FWER), is such a...
متن کاملOn stepwise control of the generalized familywise error rate
A classical approach for dealing with a multiple testing problem is to restrict attention to procedures that control the familywise error rate (FWER), the probability of at least one false rejection. In many applications, one might be willing to tolerate more than one false rejection provided the number of such cases is controlled, thereby increasing the ability of a procedure to detect false n...
متن کاملStepup Procedures Controlling Generalized Fwer and Generalized Fdr1 by Sanat K. Sarkar
In many applications of multiple hypothesis testing where more than one false rejection can be tolerated, procedures controlling error rates measuring at least k false rejections, instead of at least one, for some fixed k ≥ 1 can potentially increase the ability of a procedure to detect false null hypotheses. The k-FWER, a generalized version of the usual familywise error rate (FWER), is such a...
متن کاملStep-up and step-down procedures controlling the number and proportion of false positives
In multiple hypotheses testing, it is important to control the probability of rejecting “true” null hypotheses. A standard procedure has been to control the family-wise error rate (FWER), the probability of rejecting at least one true null hypothesis. For large numbers of hypotheses, using FWER can result in very low power for testing single hypotheses. Recently, powerful multiple step FDR proc...
متن کامل